The analytical study described in this work, based on NIR spectroscopy with a handheld device, allowed the development of a chemometric prediction model that has been validated for the objective evaluation of the ripening of olive drupes. The miniaturized, portable NIR spectrometer is proposed here as an easy-to-use sensor able to estimate the best harvesting time for ripening of olive drupes. The MicroNIR/chemometrics approach was developed for on-site identification of olive drupe ripening directly on plants, avoiding collection and successive laboratory analysis steps. A supporting parallel characterization by chromatographic techniques validated the spectroscopic prediction. The novelty of this approach consists in the possibility of investigating the olive drupe maturation point by collecting spectra in the near-infrared region and processing them using a chemometric model. The fast and accurate device allows one to easily follow the spectrum profile changes of olive drupes during ripening, thus preserving the fruits from being harvested too early or too late. The results of this study demonstrate the possibility of using the MicroNIR/chemometrics approach to determine the optimal ripening time of olives regardless of the plant variety, age and cultivation location. The results consequently demonstrated that the MicroNIR/chemometrics approach can be proposed as a new method to perform on-site evaluation of ripening by a single-click device. It can be conveniently used by any operator, who does not necessarily have to be expert but must simply be trained to use spectroscopy and a prediction model.
Read full abstract