Background: Dural arteriovenous fistulas (DAVFs) are abnormal connections between meningeal arteries and dural venous sinuses or cortical veins. A cerebral angiogram is the gold standard for diagnosing and treating DAVFs. Still, non-invasive techniques such as three-dimensional time-offlight magnetic resonance angiography (3D-TOF MRA) and susceptibility-weighted imaging (SWI) are also helpful in evaluating the location and severity of the fistulas, including cortical venous reflux (CVR) and cortical venous ectasia (CVE). This study aimed to compare the efficacy in detecting and pretreating DAVFs evaluating SWI and 3D-TOF MRA with cerebral angiography. Methods: The retrospective study included 35 patients with 41 DAVFs who underwent pre-treatment MR imaging and cerebral angiogram. The fistulous point at convexity and cavernous locations, arterial feeders, venous drainers, CVR, and CVE were evaluated. Results: SWI and 3D-TOF MRA showed high sensitivity and excellent specificity in detecting DAVFs Cognard II-IV at convexity location and high sensitivity in evaluating CVR. For DAVFs at cavernous sinus locations, arterial feeders and venous drainers were significantly identified in 3D-TOF MRA (p < 0.001). SWI exhibited superior sensitivity (87.5%) in detecting CVE at convexity locations (p < 0.001). Slow flow or low-grade fistulas in cavernous sinus locations (n = 2, 4.8%, Cognard I) were not identified using MR imaging. Conclusion: SWI and 3D-TOF MRA are helpful tools for evaluating high-flow DAVFs (Cognard II-IV). SWI is superior in detecting CVE in convexity locations but is limited in assessing the fistulous point in cavernous sinus locations. Thus, combining findings from both SWI and 3D-TOF MRA exhibited high accuracy in detecting and pretreating high-flow DAVFs.
Read full abstract