Multi-class segmentation of unlabelled living cells in time-lapse light microscopy images is challenging due to the temporal behaviour and changes in cell life cycles and the complexity of these images. The deep-learning-based methods achieved promising outcomes and remarkable success in single- and multi-class medical and microscopy image segmentation. The main objective of this study is to develop a hybrid deep-learning-based categorical segmentation and classification method for living HeLa cells in reflected light microscopy images. A symmetric simple U-Net and three asymmetric hybrid convolution neural networks—VGG19-U-Net, Inception-U-Net, and ResNet34-U-Net—were proposed and mutually compared to find the most suitable architecture for multi-class segmentation of our datasets. The inception module in the Inception-U-Net contained kernels with different sizes within the same layer to extract all feature descriptors. The series of residual blocks with the skip connections in each ResNet34-U-Net’s level alleviated the gradient vanishing problem and improved the generalisation ability. The m-IoU scores of multi-class segmentation for our datasets reached 0.7062, 0.7178, 0.7907, and 0.8067 for the simple U-Net, VGG19-U-Net, Inception-U-Net, and ResNet34-U-Net, respectively. For each class and the mean value across all classes, the most accurate multi-class semantic segmentation was achieved using the ResNet34-U-Net architecture (evaluated as the m-IoU and Dice metrics).