We consider a linearised inverse conductivity problem for electromagnetic waves in a three dimensional bounded domain at a high time-harmonic frequency. Increasing stability bounds for the conductivity coefficient in the full Maxwell system and in a simplified transverse electric mode are derived. These bounds contain a Lipschitz term with a factor growing polynomially in terms of the frequency, a Hölder term, and a logarithmic term which decays with respect to the frequency as a power. To validate this increasing stability numerically, we propose a reconstruction algorithm aiming at the recovery of sufficiently many Fourier modes of the conductivity. A numerical evidence shed light on the influence of the growing frequency and confirms the improved resolution.
Read full abstract