Linear combinations of fundamental solutions to the parabolic heat equation with source points fixed in time is investigated. The open problem whether these linear combinations generate a dense set in the space of square integrable functions on the lateral boundary of a space-time cylinder, is settled in the negative. Linear independence of the set of fundamental solutions is shown to hold. It is outlined at the end, for a particular example, that such linear combinations constitute a linearly independent and dense set in the space of square integrable functions on the upper top part (where time is fixed) of the boundary of this space-time cylinder.
Read full abstract