The current time-domain solution methods for the wavefield equations of a single medium do not apply to the wavefield equations of shallow water seismic with a fluid–elastomer coupling. To solve this problem, based on the explicit central difference method and implicit Newmark method, the explicit–explicit method, implicit–implicit method, and explicit–implicit method time-domain expressions for the local solution are derived, and the time-domain expressions for the explicit and implicit methods in the global solution are derived.The stability and computational efficiency of different time-domain solving methods for the shallow water seismic wavefield equations are theoretically analyzed. The numerical results are compared with the simulation data from the multiphysics field simulation software COMSOL 6.0, and the numerical stability, computational efficiency and accuracy of the different solving methods are also analyzed theoretically. The results show that the implicit method in the global solution is relatively optimal among the methods proposed in this paper, which ensures numerical stability at the larger step size for improving the computational efficiency and considers the higher computational efficiency and accuracy.
Read full abstract