For health monitoring and fault diagnosis of critical mechanical system components, historical data related to equipment failures are often limited and exhibit varying imbalanced multi-class characteristics (e.g., with noisy and time-series data). Moreover, fault diagnosis frameworks based on traditional resampling algorithms (e.g., SMOTE) mostly heavily rely on manual feature extraction, making them difficult to adapt to diverse working conditions or objects. To address these challenges, we propose a novel end-to-end imbalanced multi-class fault diagnosis architecture using transfer learning and oversampling strategies-based multi-layer support vector machines (ML-SVMs). ML-SVMs utilize a VGG-based deep migration feature extraction method to extract features from original time-domain vibration signals, employing natural source domain weights to reduce dependence on human experience and sample size. Then, ML-SVMs introduce ISCOTE (i.e., the first and second layers of ML-SVMs), an improved version of the sample-characteristic over-sampling technique (SCOTE). ISCOTE generates more effective and reasonable samples for each fault class through a scaling factor and iterative optimization mechanism, whether in noisy feature spaces with fuzzy boundaries or in clear boundary feature spaces. Finally, in the third layer of ML-SVMs, multi-class SVMs (e.g., LS-SVMs and standard SVMs) are utilized to train balanced feature samples and derive classification models with strong generalization ability. The effectiveness of ML-SVMs is demonstrated through 16 fault diagnosis instances using CWRU and IMS bearing data, PHM 2010 and TTWD tool wear data. Results indicate that ML-SVMs outperform 8 well-known oversampling-based algorithms in fault diagnosis recognition rates and algorithm robustness. It has offered a feasible architecture for multi-class imbalanced fault scenarios with limited data and multiple adverse features.
Read full abstract