In this work, low-methoxyl pectin was chemically modified by reaction with glycidyl methacrylate (GMA) to give a material with low hydrosolubility. After physio-chemical characterization by FT-IR, DSC, and TGA analyses, the methacrylated/modified pectin (Pect-GMA) was crosslinked after the addition of sodium persulfate (SP), that actuates as initiator, at 50 °C for 24 and 48 h either in the presence or not of aqueous polymethacrylate dispersion (Eudragit ® RS 30 D) to obtain free films by Teflon ® plate “casting” process. Different Pect-GMA/Eudragit ® RS 30 D ratios and SP concentrations were used. The free films were characterized by the determination of water vapor transmission (WVT), the swelling index ( I eq%) in simulated gastric (SGF) and intestinal (SIF) fluids, and by scanning electron microscopy (SEM). The presence of ionized groups in Pect-GMA turned the films pH-dependent because I eq% of swollen crosslinked Pect-GMA films was larger at pH 6.8 than at pH 1.2. This was confirmed by the large pore size observed in the micrographs of SIF-swollen lyophilized films. In this way, films containing Pect-GMA and Eudragit ® RS 30 D, a time-dependent polymer, may present a synergistic action that favors specific biodegradation of the film in distal end of the gastrointestinal tract (GIT) by enzymes produced by the colonic microflora, enabling the modification of the release kinetics of drugs.