The quantum statistical mechanical propagator for a harmonic oscillator with a time-dependent force constant, mω2(t), has been investigated in the past and was found to have only a formal solution in terms of the solutions of certain ordinary differential equations. Such path integrals are frequently encountered in semiclassical path integral evaluations and having exact analytical expressions for such path integrals is of great interest. In a previous work, we had obtained the exact propagator for motion in an arbitrary time-dependent harmonic potential in the overdamped limit of friction using phase space path integrals in the context of Lévy flights - a result that can be easily extended to Brownian motion. In this paper, we make a connection between the overdamped Brownian motion and the imaginary time propagator of quantum mechanics and thereby get yet another way to evaluate the latter exactly. We find that explicit analytic solution for the quantum statistical mechanical propagator can be written when the time-dependent force constant has the form ω2(t)=λ2(t)−dλ(t)dt, where λ(t) is any arbitrary function of t and use it to evaluate path integrals which have not been evaluated previously. We also employ this method to arrive at a formal solution of the propagator for both Lévy flights and Brownian subjected to a time-dependent harmonic potential in the underdamped limit of friction.
Read full abstract