Ticks are obligatory hematophagous arachnids, serving as vectors for a wide array of pathogens that can be transmitted to animals and humans. The ability of ticks to acquire and transmit various pathogens depends on their attraction to quality reservoir hosts and the survival of the pathogens in ticks' gut and other tissues. However, the complex dynamics of tick-pathogen interaction and host-seeking behavior remain understudied. This investigation revealed notable variation in tick preference for domestic animals, with camel being the most preferred host. Moreover, our spatial analysis of tick attachment sites showed nostrils are the most preferred sites by various tick species. Our epidemiology data showed variation in the pathogens harbored by camel (host) and vector (Hyalomma rufipes), demonstrating the camel's efficiency as reservoir host and ticks' vector competence for various pathogens. With our behavioral experiment using H. rufipes and its preferred host's (camel) breath and body signature odors, we identified novel attractants for H. rufipes, thus offering new avenues for combating tick-borne diseases. Overall, our study presents novel insights into how multiple factors shape tick-host-pathogen interaction.