The development of genetic technologies and bioengineering are creating an increasing number of genetically engineered microorganisms with new traits for diverse industrial applications such as vaccines, drugs and pollutant degraders. However, the destiny of genetically engineered bacterial spores released into the environment as long-life organisms has remained a big environmental challenge. In this study, an environmentally responsible and sustainable gene technology solution based on the concept of thymine starvation is successfully applied for cloning and expression of a Helicobacter pylori antigen on Bacillus subtilis spore surface. As an example, a recombinant Bacillus subtilis strain A1.13 has been created from a gene fusion of the corresponding N-terminal fragment of spore coat protein CotB in B. subtilis and the entire urease subunit A (UreA) in H. pylori and the fusion showed a high stability of spore surface expression. The outcomes can open the door for developing highly safe spore vectored vaccines against this kind of pathogen and contributing to reduced potential risks of genetically engineered microorganisms released in the environment.
Read full abstract