Background In our previous studies, we found a disordered taxonomic composition and function of gut microbiota (GM) in atrial fibrillation (AF) patients. However, direct evidence about the association between dysbiotic microbiota and thromboembolic risk in AF is lacking. Aims In this study, we analyzed the interaction of GM and related functional patterns in AF with different CHA2DS2-VASc scores to assess its potential as a biomarker for predicting stroke risk. Patients and Methods. The CHA2DS2-VASc score was used for thromboembolic risk stratification in AF according to American Heart Association (AHA) guidelines. We investigated the taxonomic and functional annotation of GM based on metagenomic data from 50 AF patients (32 with high thromboembolic risk (CHA2DS2-VASc score ≥2 (males) or CHA2DS2-VASc score ≥3 (females)) and 18 individuals with low thromboembolic risk (CHA2DS2-VASc score <2 (males) or CHA2DS2-VASc score <3 (females))). Results The gut microbial diversity, composition, and function in AF were different in high and low CHA2DS2-VASc score groups. In high thromboembolic risk group, the abundance of Prevotella, Lachnospiraceae, and Eubacterium rectale, related to the production of short-chain fatty acids and anti-inflammatory were reduced (all P < 0.05). Furthermore, annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG), a database of genes and genomes, the KEGG orthology-based scoring approach exhibited a significant association with thromboembolic risk in AF patients. Conclusions Imbalance of GM and microbial dysfunction are involved in aggravated thromboembolic risk of AF.
Read full abstract