Going vertical as in 3-D IC design, reduces the distance between vertical active silicon dies, allowing more dies to be placed closer to each other. However, putting 2-D IC into three-dimensional structure leads to thermal accumulation due to closer proximity of active silicon layers. Also the top die experiences a longer heat dissipation path. All these contribute to higher and non-uniform temperature variations in 3-D IC; higher temperature exacerbates negative bias temperature instability (NBTI). NBTI degrades CMOS transistor parameters such as delay, drain current and threshold voltage. While the impact of transistor aging is well understood from the device point of view, very little is known about its impact on security. We demonstrated that a hardware intruder could leverage this phenomenon to trigger the payload, without requiring a separate triggering circuit. In this paper we provide a detailed analysis on how tiers of 3-D ICs can be subject to exacerbated NBTI. We proposed to embed threshold voltage extractor circuit in conjunction with a novel NBTI-mitigation scheme as a countermeasure against such anticipated Trojans. We validated through post-layout and Monty Carlo simulations using 45nm technology that our proposed solution against NBTI effects can compensate the NBTI-effects in the 3-D ICs. With the area overhead of 7% implemented in Mod-3 counter, our proposed solution can completely tolerate NBTI-induced degraded threshold voltage shift of up to 60%.
Read full abstract