In this study, we explore a multilayered structure in which the coupled oscillators of one layer serve as a shared medium for an uncoupled population of neurons. The layers function based on the memristive Rulkov map, and interlayer connections are established through magnetic flux variables, referred to as field coupling. We adopt both hybrid (electrical and chemical) and exclusively chemical couplings for intralayer connectivity. The study highlights the pivotal role of the reversal potential in the dynamics of chemical coupling, while the firing threshold and sigmoid slope play lesser roles. Synchrony analysis reveals distinct synchronization behaviors between the layers. Notably, although the coupled layer can achieve phase synchrony, it fails to induce comparable synchrony in the uncoupled layer. Our findings also highlight the emergence of distinct collective dynamics in the uncoupled network, influenced by the coherence level of the flux variables in the coupled layer. Specifically, incoherent, two-clustered, and globally synchronized oscillations of flux variables in the coupled layer lead to chimera states, two-cluster synchronization, and complete synchronization in the uncoupled neurons, respectively.
Read full abstract