A novel integrated DC-DC converter is proposed for the first stage of two-stage grid connected photovoltaic (PV) systems with energy storage systems. The proposed three-port converter (TPC) consists of a buck–boost converter, interposed between the battery storage system and the DC-AC inverter, in series with PV modules. The buck–boost converter in the proposed TPC is utilized for maximum power point tracking by regulating two power switches. The output power of the proposed converter is regulated by controlling the DC-AC converter. During the battery-charging mode, partial power regulation is employed with a direct power flow path (the series-connection of the PV panel, the battery and the output). As resistances in this path are almost negligible, the power conversion efficiency is higher than existing topologies. During battery-discharging mode, the power conversion is processed through a buck–boost converter with only two active power switches and one inductor. With fewer components, higher power conversion efficiency is also achieved. The circuit operation and analysis are presented in detail. To illustrate the simplicity of the converter control, the performance of the converter is tested with a straightforward maximum power point tracking on a PV system with battery cells. Simulation and experimental tests are carried out to demonstrate circuit operation and power conversion efficiency.