Quantitative values of positron emission tomography (PET) images using non-local-mean in a silicon photomultiplier (SiPM)-PET/computed tomography (CT) system with phantom and clinical images.The evaluation was conducted on a National Electrical Manufacturers Association body phantom with micro-spheres (4, 5, 6, 8, 10, 13 mm) and clinical images using the SiPM-PET/CT system.The signal-to-background ratio of the phantom was set to 4, and all PET image data was obtained and reconstructed using three-dimensional ordered subset expectation maximization, time-of-flight, point-spread function, and a 4-mm Gaussian filter (GF) and clear adaptive low-noise method (CaLM) in mild, standard, and strong intensities.The evaluation included the standardized uptake value (SUV), percent contrast (QH), coefficient of variation of the background area (CVbackground) clinical imaging for SUV of lung nodules, liver signal-to-noise ratio (SNR), and visual evaluation.SUVmax for 8-mm sphere in phantom images at 2 min for GF and CaLM (mild, standard, strong) were 2.11, 2.32, 2.02, and 1.72; the QH, 8 mm was 27.33 %, 27.47 %, 21.81 %, and 16.09 %; and CVbackground was 12.78, 11.35, 7.86, and 4.71, respectively.CaLM demonstrated higher SUVmax in clinical images than GF for all lung nodule sizes. The average SUVmax for nodules with a diameter of ≤ 1 cm were 5.9 ± 2.4, 9.9 ± 4.9, 9.9 ± 5.0, and 9.9 ± 5.0 for GF and CaLM-mild, standard, and strong intensities, respectively.Liver SNRs were higher for CaLM (mild, standard, strong) compared to GF, with increasing CaLM intensity causing higher liver SNR. CaLM-mild and standard demonstrated suitability for diagnosis in visual evaluation.
Read full abstract