In this paper, we present an overview of three-dimensional (3D) optical imaging techniques for real-time automated sensing, visualization, and recognition of dynamic biological microorganisms. Real time sensing and 3D reconstruction of the dynamic biological microscopic objects can be performed by single-exposure on-line (SEOL) digital holographic microscopy. A coherent 3D microscope-based interferometer is constructed to record digital holograms of dynamic micro biological events. Complex amplitude 3D images of the biological microorganisms are computationally reconstructed at different depths by digital signal processing. Bayesian segmentation algorithms are applied to identify regions of interest for further processing. A number of pattern recognition approaches are addressed to identify and recognize the microorganisms. One uses 3D morphology of the microorganisms by analyzing 3D geometrical shapes which is composed of magnitude and phase. Segmentation, feature extraction, graph matching, feature selection, and training and decision rules are used to recognize the biological microorganisms. In a different approach, 3D technique is used that are tolerant to the varying shapes of the non-rigid biological microorganisms. After segmentation, a number of sampling patches are arbitrarily extracted from the complex amplitudes of the reconstructed 3D biological microorganism. These patches are processed using a number of cost functions and statistical inference theory for the equality of means and equality of variances between the sampling segments. Also, we discuss the possibility of employing computational integral imaging for 3D sensing, visualization, and recognition of biological microorganisms illuminated under incoherent light. Experimental results with several biological microorganisms are presented to illustrate detection, segmentation, and identification of micro biological events.