Quasi-Keplerian flow, a special regime of Taylor–Couette co-rotating flow, is of great astrophysical interest for studying angular momentum transport in accretion disks. The well-known magnetorotational instability (MRI) successfully explains the flow instability and generation of turbulence in certain accretion disks, but fails to account for these phenomena in protoplanetary disks where magnetic effects are negligible. Given the intrinsic decrease of the temperature in these disks, we examine the effect of radial thermal stratification on three-dimensional global disturbances in linearised quasi-Keplerian flows under radial gravitational acceleration mimicking stellar gravity. Our results show a thermo-hydrodynamic linear instability for both axisymmetric and non-axisymmetric modes across a broad parameter space of the thermally stratified quasi-Keplerian flow. Generally, a decreasing Richardson or Prandtl number stabilises the flow, while a reduced radius ratio destabilises it. This work also provides a quantitative characterisation of the instability. At low Prandtl numbers $Pr$ , we observe a scaling relation of the linear critical Taylor number $Ta_c\propto Pr^{-6/5}$ . Extrapolating the observed scaling to high $Ta$ and low $Pr$ may suggest the relevance of the instability to accretion disks. Moreover, even slight thermal stratification, characterised by a low Richardson number, can trigger the flow instability with a small axial wavelength. These findings are qualitatively consistent with the results from a traditional local stability analysis based on short wave approximations. Our study refines the thermally induced linearly unstable transition route in protoplanetary disks to explain angular momentum transport in dead zones where MRI is ineffective.
Read full abstract