The increasing sophistication of cybersecurity threats, driven by the proliferation of big data and the Internet of Things (IoT), necessitates the development of advanced real-time intrusion detection systems (IDSs). In this study, we present a novel approach that integrates NiO-doped WO3-x/ZnO bilayer self-rectifying memristors (SRMs) within a reservoir computing (RC) framework for IDS applications. The proposed crossbar array architecture exploits the exceptional dynamic properties of SRMs, achieving a classification accuracy of 93.07% on the CSE-CIC-IDS2018 data set, while demonstrating ultrahigh information-processing efficiency. Our approach not only leverages the tunable characteristics of memristors but also addresses the challenge of sneak path currents in large-scale integration, offering a robust and scalable solution for next-generation IDS. This work exemplifies the power of emerging electronics in enhancing cybersecurity through innovative hardware implementations.
Read full abstract