Tobacco mosaic virus (TMV) is a major agricultural threat. Here, a cationic star polymer (SPc) was designed to construct an efficient nanodelivery system for moroxydine hydrochloride (ABOB). ABOB could self-assemble with SPc via a hydrogen bond and van der Waals force, and this complexation reduced the particle size of ABOB from 2406 to 45 nm. With the aid of SPc, the contact angle of ABOB decreased from 100.8 to 79.0°, and its retention increased from 6.3 to 13.8 mg/cm2. Furthermore, the complexation with SPc could attenuate the degradation of ABOB in plants, and the bioactivity of SPc-loaded ABOB significantly improved with a reduction in relative viral expression from 0.57 to 0.17. The RNA-seq analysis revealed that the ABOB/SPc complex could up-regulate the expression of growth- and photosynthesis-related genes in tobacco seedlings, and the chlorophyll content increased by 2.5 times. The current study introduced an efficient nanodelivery system to improve the bioactivity of traditional antiviral agents.