This study explains the intricate interplay between functional groups and the single crystal structure of the compound 1-(furan-2-yl)-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (FT2MP) using Density Functional Theory (DFT) calculations. Notably, geometry optimization at B3LYP using 6-311G+(2d,p) closely aligned with experimental distances from X-ray diffraction (XRD) upon comparison. A Q-switched, frequency-doubled pulsed Nd. YAG laser (532 nm, 7 ns pulses), a 25 cm focal length lens, and a 0.001 mol/L FT2MP solution in Dimethylformamide was used to measure third-order nonlinear optical (NLO) parameters and subsequently the origin of second/third harmonic generation efficiency is discussed. The third-order nonlinear parameters of FT2MP were found to be Δɸ = 0.95, n2 = −9.605 × 10−9 cm2/W, β = 2.74 × 10−6 cm/W, and χ(3) = 5.58 × 10−7 esu. Information about the electronic structure and reactivity of the molecule is provided via the addition of Global Chemical Reactivity Descriptors (GCRD), molecular electrostatic potential (MEP) and Frontier Molecular Orbitals (FMOs) for electronic structure and reactivity insights. Hirshfeld surface analysis was used to study intermolecular interactions. This investigation indicates the potential of FT2MP for third harmonic generation, providing a comprehensive understanding of its molecular structure, reactivity, and intermolecular interactions.