Cyclosporine A (CsA) is an immunosuppressive drug, used in organ transplantations. Oxidative stress, inflammation and renin-angiotensin system (RAS) activation play an important role in CsA-toxicity. Glycine (Gly) has antioxidant and anti-inflammatory effects. In this study, Gly was investigated for its protective role against CsA-induced toxicity. CsA (20 mg/kg/day; subcutaneously) was administered to rats along with Gly injection (250 or 1000 mg/kg; intraperitoneally) for 21 days. Renal function markers [serum urea and creatinine and urinary protein and kidney injury molecule levels and creatinine clearance values] together with histopathological examinations were performed. Oxidative stress (reactive oxygen species, thiobarbutiric acid reactive substances, advanced oxidation products of protein, glutathione, ferric reducing anti-oxidant power and 4-hydroxynonenal levels), and inflammation (myeloperoxidase activity) were determined in kidney tissue. The RAS system [angiotensin II (Ang II) levels, and mRNA expressions of angiotensin converting enzyme (ACE), angiotensin II type-I receptor (AT1R)] and NADPH-oxidase 4 (NOX4) were measured in kidney and aorta. CsA caused significant disturbances in renal function markers, increases in oxidative stress and inflammation parameters and renal damage. Serum angiotensin II levels and mRNA expressions of ACE, AT1R and NOX4 elevated in the aorta and kidney of CsA-rats. Gly, especially its high-dose, alleviated renal function markers, oxidative stress, inflammation and renal damage in CsA-rats. Moreover, serum Ang II levels and mRNA expressions of ACE, AT1R and NOX4 decreased significantly in aorta and kidney in CsA-rats due to Gly treatment. Our results indicate that Gly may be useful for the prevention of CsA-induced renal and vascular toxicity.
Read full abstract