ConspectusPotassium metal serves as the anode in emerging potassium metal batteries (KMBs). It also serves as the counter electrode for potassium ion battery (KIB) half-cells, with its reliable performance being critical for assessing the working electrode material. This first-of-its-kind critical Account focuses on the dual challenge of controlling the potassium metal-substrate and the potassium metal-electrolyte interface so as to prevent dendrites. The discussion begins with a comparison of the physical and chemical properties of K metal anodes versus the much oft studied Li and Na metal anodes. Based on established descriptions for root causes of dendrites, the problem should be less severe for K than for Li or Na, while in fact the opposite is observed. The key reason that the K metal surface rapidly becomes dendritic in common electrolytes is its unstable solid electrolyte interphase (SEI). An unstable SEI layer is defined as being non-self-passivating. No SEI is perfectly stable during cycling, and all SEI structures are heterogeneous both vertically and horizontally relative to the electrolyte interface. The difference between a "stable" and an "unstable" SEI may be viewed as the relative degree to which during cycling it thickens and becomes further heterogeneous. The unstable SEI on K metal leads to a number of interrelated problems, such as low cycling Coulombic efficiency (CE), a severe impedance rise, large overpotentials, and possibly electrical shorting, all of which have been reported to occur as early as in the first 10 plating/stripping cycles. Many of the traditional "interface fixes" employed for Li and Na metal anodes, such as various artificial SEIs, surface membranes, barrier layers, secondary separators, etc., have not been attempted or optimized for the case of K. This is an important area for further exploration, with an understanding that success may come harder with K than with Li due to K-based SEI reactivity with both ether and ester solvents.The second critical problem with K metal anodes is that they do not thermally or electrochemically wet a standard (untreated) Cu foil current collector. Published experimental and modeling research directly highlights the weak bonding between the K atoms and a Cu surface. Existing surface treatment approaches that achieve improved K wetting are discussed, along with the general design rules for future studies. Also discussed are geometry-based methods to tune nucleation as well dual approaches where nucleation and SEI structure are tuned through complementary schemes to achieve extended half-cell and full battery stability. We hypothesize that K metal never achieves a planar wetting morphology even at cycle one, making the dendrites "baked-in". We propose that classical thin film growth models, Frank van der Merwe (F-M), Volmer-Weber (V-W), and Stranski-Krastanov (S-K), can be employed to describe early stage plating behavior. It is demonstrated that islandlike V-W growth is the applicable description for the natural plating behavior of K on pristine Cu. Moving forward, there are three inter-related thrusts to be pursued: First, K salt-based electrolyte formulations have to mature and become further tailored to handle the increased reactivity of a metal rather than an ion anode. Second, the K-based SEI structure needs to be further understood and ultimately tuned to be less reactive. Third, the energetics of the K metal-current collector interface must be controlled to promote planar wetting/dewetting throughout cycling.