Atomic layer deposition (ALD) is a highly important technology to fabricate nickel and nickel compound thin films. The quality of the ALD films relies much on the surface chemistry reactions involved in the ALD process. Aiming to achieve high-quality ALD films, a careful surface chemistry study is carried out in this work to investigate the surface thermolysis behavior of an amidinate-type nickel precursor, bis(N,N′-di-tert-butylacetamidinato)nickel(II) (Ni(amd)2). Using the in situ technique of X-ray photoelectron spectroscopy, this work reveals a number of implications which are important for the engineering of the ALD processes. The Ni(amd)2 precursor is shown to be reactive to the SiOx surface even at room temperature, which suggests a good suitability for low-temperature ALD. The surface amidinate moiety is found to decompose at 250 °C, which suggests the limitation of Ni(amd)2 for high-temperature ALD. On the other hand, the byproduct of the surface reaction, amidine, can be adsorbed on the surface ...
Read full abstract