With the rapid development of modern wearable electronics, powerful and deformable thermoelectric generators have become an urgent need as the power units that convert environmental or body heat into electricity. Existing efforts mostly focused on the assistance for deformability by substrates/additives, the resultant devices usually output much less power and showed very poor power retainment. Elasticity is inherent to all solids, which therefore offers an intrinsic solution for making thermoelectrics deformable without compromise in power output because of its full recoverability. This work demonstrates this in best-performing (Bi, Sb)2(Te, Se)3 thermoelectrics near room temperature, ending up in the film devices with both extraordinary power density and robust recoverable bendability. This originates from the inherent large elasticity for the in-plane orientation, which is enabled by an easy tape stripping approach for the Van der Waals layered structure, allowing the realization of both powerfulness and bendability that are equally important for wearable thermoelectrics.