Achieving nearly zero-energy buildings requires the efficient utilization and storage of renewable energy. Salt-hydrate-based thermochemical energy storage (TCES) systems are promising due to their high heat storage capacity and minimal seasonal heat loss. However, challenges remain in their commercialization and large-scale application. For instance, TCES systems using magnesium sulphate (MgSO4) provide low temperature lifts due to slow reaction kinetics. Incorporating deliquescent salts like magnesium chloride (MgCl2) can enhance sorption performance but may introduce stability issues such as agglomeration and decomposition. This study presents a novel binary-salt composite combining MgSO4 and MgCl2 within commercial mesoporous silica (CMS) to address these challenges and enhance overall performance. The binary-salt composite powder, with a particle size range of 150–300 μm, is well-suited for use in fluidized-bed reactors, where fast mass and heat transfer promote efficient moisture adsorption, prevent uneven temperature distribution, and reduce agglomeration. Thermogravimetric analysis (TGA) was employed to evaluate the water sorption and desorption behaviour of MgCl2-MgSO4@CMS binary-salt composites with a total salt content of 50 wt% and salt mixing ratios of 3:1, 1:1, and 1:3. The corresponding water sorption capacities were 0.95, 0.68, and 0.57 g/g, respectively. In comparison, the MgSO4@CMS single-salt composite showed a lower water adsorption capacity of 0.47 g/g and required temperatures exceeding 150 °C for complete regeneration. Reactor-scale experiments demonstrated that the MgCl2-MgSO4@CMS composite with a 1:1 salt mixing ratio could be fluidized at low gas velocities on the order of 10−2 m/s, achieving a maximum temperature lift of 24.7 °C and an energy density of 1018 kJ/kg during hydration at 80% relative humidity and 30 °C. Additionally, the binary-salt composite showed good cyclic stability with less particle agglomeration compared to the MgCl2@CMS single-salt composite.
Read full abstract