The efficient development and utilization of green biomass-based macromolecule engineering materials are essential for the sustainable development of human civilization. In this study, lignin-based ethylene-propylene-diene-monomer (EPDM) composites with excellent mechanical performance were fabricated using a simple method. The effects of water-insoluble enzymatically hydrolyzed lignin (EL) and alkali lignin (KL) on the mechanical performance of the composites were investigated separately. The results showed that the tensile strength of EPDM reinforced with KL and EL increased to 24.5 MPa and 22.1 MPa, respectively, surpassing that of the carbon black (CB)-reinforced EPDM. After 72 h of thermo-oxidative aging, the retention rates of the tensile strength and elongation at break in the lignin-reinforced EPDM were much better than those formed with pure CB, indicating that lignin significantly improved the thermo-oxidative aging resistance of the composites. In summary, the Zn2+ coordination bonds formed between the interface of EPDM and lignin in lignin/CB/EPDM ternary composites effectively improved the mechanical performance and aging resistance of the composites. This study has significant implications for enhancing the utilization of lignin and green functional polymer materials.
Read full abstract