Abstract Diolefin elastomers play an important role in production and life, but their unsaturated structure leads to extreme vulnerability to heat and oxygen attack, so research into the aging of diolefin elastomers has been a hot spot in the industry. To overcome this limitation, a strategy based on the thermal decomposition of 1,1′-Azobis(cyclohexanezonitrile) (Azo) is devised, which forms stabilized compounds with imine groups during the heat process and captures radical. The diolefin elastomer was combined with azo, and isoprene rubber (IR) is chosen as a model material. Azo was added to IR to prepare the composite material (IR-Azo), and the thermo-oxidative resistance of the composite was significantly improved. Such as, after being exposed to thermo-oxidative conditions for 24 h, IR-Azo showed a tensile strength of 14.96 MPa with a retention rate of 68.25% which exceeded that of many traditional antioxidants. This study provides new insights into the development of elastomers with excellent thermo-oxidative resistance.