In this paper, we study asymptotic behaviors for classical thermoelastic plate equations with the Fourier law of heat conduction in the whole space , where we introduce a reduction methodology basing on third‐order (in time) differential equations and refined Fourier analysis. We derive optimal growth estimates when , bounded estimates when , and decay estimates when for the vertical displacement in the norm. Particularly, the new critical dimension for distinguishing the decisive role between the plate model and the Fourier law of heat conduction is discovered. Moreover, concerning the small thermal parameter in the temperature equation, we study the singular limit problem. We not only show global (in time) convergence of the vertical displacements between thermoelastic plates and structurally damped plates but also rigorously demonstrate a new second‐order profile of the solution. Our methodology can settle several closely related problems in thermoelasticity.
Read full abstract