We present a simple and effective method for suppressing thermally induced wavelength drift in a widely tunable digital supermode distributed Bragg reflector (DS-DBR) laser monolithically integrated with a semiconductor optical amplifier (SOA). For fast thermal compensation, pre-compensatory currents are injected into the gain medium section of the DS-DBR laser and the SOA. This method can be easily applied to existing commercial tunable lasers, since it is implemented without any modification to manufacturing process. Experimental results exhibit that wavelength stability is noticeably improved to ± 0.01 nm. We also experimentally demonstrate a fast channel-to-channel switching in a wavelength-routed optical switching system employing a 90 × 90 arrayed waveguide grating router (AWGR). The measured switching time is less than 0.81 µs.
Read full abstract