After liver transplantation, steroid therapy is often used to prevent rejection. However, long-term steroid use can lead to serious side effects, therefore, this study aimed to evaluate the feasibility of peripheral regulatory T cell profiles for steroid discontinuation after liver transplantation through cellular thermal modeling and real-time monitoring of intracellular thermodynamics. In this study, cellular thermal modeling techniques were used to simulate the thermodynamic characteristics of peripheral TREgs under different conditions. The dynamic changes of peripheral Treg in liver transplantation animal models were monitored by flow cytometry and molecular biology. Significant changes in peripheral Treg profiles were observed after initiation of steroid therapy, especially in the discontinuation group, and these changes were strongly associated with the restoration of immune homeostasis. Real-time monitoring of the thermodynamic data revealed that peripheral Treg activity showed a specific temperature dependence in the cellular thermal model. Cell thermal modeling combined with real-time monitoring of intracellular thermodynamics provides a new perspective for evaluating the feasibility of peripheral regulatory T cell profiles for steroid discontinuation after liver transplantation. Strengthening the dynamic monitoring of peripheral Treg spectrum provides an important basis for the formulation of personalized immunosuppression strategies, and improves the therapeutic effect and quality of life of liver transplant patients.