Thermal expansion of ball screw systems affects the machining accuracy of machine tools significantly. This paper intends to provide a comprehensive error compensation method for the time-varying positioning error of machine tools. To confirm the thermal deformation mechanism of ball screw systems, experiments have been designed to study the thermal behaviors of a ball screw system under varying temperature conditions. An exponential algorithm is proposed to predict the temperature variation pattern of the ball screw based on finite element analysis, and the actual thermal boundary conditions of the ball screw system are exactly defined according to the proposed algorithm and the experimental results. Then, a comprehensive compensation model is established based on the decomposition of the initial geometric error and thermal error components. Finally, a real-time error compensation system is developed for machine tools based on the function of external machine original coordinate shift and fast Ethernet data interaction, and satisfactory results have been achieved for the compensation experiments on a machining center.
Read full abstract