We present a Monte Carlo (MC) approach to solve the phonon Boltzmann transport equation (BTE) in which the anisotropic phonon dispersion relations over the full Brillouin zone (BZ) are used. In this approach, the discretization of the BZ used to compute the phonon relaxation time places constraints on the direction of scattered phonons in the real-space simulation domain. The phonon dispersion and phonon relaxation times are calculated using the density functional theory (DFT) approach. The modified MC approach is validated by a close examination of its ability to simulate phonon transport in both the ballistic and diffusive regimes for multiple materials including GaAs, InAs, ThO2, and α-U. In doing so, the phonon thermal conductivities from 100 K to 1000 K are calculated and compared with traditional non-transport solution of the phonon BTE. It is found that the phonon thermal conductivities of α-U and ThO2 obtained from MC simulations using isotropic dispersion are larger than the values obtained using anisotropic phonon dispersion relations over the full BZ. The effect of phonon-defect scattering on the thermal conductivity of ThO2 is also studied as an application of the current MC approach and found to agree with previously computed values in the literature. The MC solver developed here has been parallelized as a step to demonstrate its potential to solving computationally intensive phonon thermal transport problems at the mesoscale.
Read full abstract