Parkinson's disease (PD) is a common neurodegenerative disorder characterized by motor symptoms and non-motor symptoms. It has been found that intestinal issues usually precede motor symptoms. Microorganisms in the gastrointestinal tract can affect central nervous system through the microbiota-gut-brain axis. Accumulating evidence has shown that disturbances in the microbiota-gut-brain axis are linked with PD. Thus, this pathway appears to be a promising therapeutic target for treatment of PD. In this review, we mainly described gut dysbiosis in PD and their underlying mechanisms for mediating neuroinflammation and peripheral immune response in PD pathology and futher discussed the potential small-molecule compounds and genic therapeutic strategies targeting the microbiota-gut-brain axis and their applications in PD. Studies have found that some small molecule compounds and alterations of inflammation-related genes can improve the motor and non-motor symptoms of PD by improving the microbiota-gut-brain axis, which may provide potentially beneficial drugs and molecular targets for the therapies of PD.
Read full abstract