ConspectusThe emulation of ingenious biofunctions has been a research focus for several decades. Metal-organic cages (MOCs), as a type of discrete supramolecular assembly with well-defined shapes and cavities, have aroused great interest in chemists to imitate natural protein cages or enzymes. However, to genuinely achieve tailored functionalities or reactivities of enzymes, the design of cage structures combining both the confined microenvironment and the active site is a prerequisite. Therefore, the integration of functionalized motifs into MOCs is expected to provide a feasible approach to construct biofunctional confined nanospaces, which not only allows the modulation of cage properties for applications such as molecular recognition, transport, and catalysis but also creates unique microenvironments that promote enzymatic effects for special reactivities and selectivities, thereby providing a versatile platform to achieve exceptional biomimetic functions and beyond.In this Account, we specifically focus on our research toward engineering active confined-nanospaces in MOCs via incorporation of M(ImPhen)3 metalloligands, a typical tris-chelate coordination moiety comprising imidazophenanthroline ligands and variable metal ions, as the principle functional units for stepwise assembly of active-MOCs. Starting from their structure design and merits, we describe the versatility of M(ImPhen)3 centers for multifunctionalization of the confined cage-nanospaces. By integrating different metal ions like Ru, Os, Fe, Co, Ni, Zn, the metal ion inherent properties, e.g., redox activity of Fe/Co-centers, chirality, and photoactivity of Ru-centers, and dynamics of Co/Zn-centers, could be integrated and tailored on the cages as isostructural nanosized containers or reactors. Changing the Pd or Pt cage vertices to organic clips could remarkably enhance acid-base stability and endow cages with flexibility and allostery. Utilization of ImPhen organic ligands containing imidazole groups introduces proton transfer capability, which can couple with the high-positive charges on the cage to create amphoteric microenvironments in the porous open-cage solution. Moreover, the nonplanar stereoconfiguration of M(ImPhen)3 confers multiple peripheral pockets on the cage, which render multisite, high-order, and dynamics guest binding for the benefit of applications such as drug delivery, molecular separation, and catalytic turnover.The construction of active-MOCs from tailorable M(ImPhen)3 metalloligands provides us with a new perspective on their structural design and functionalities. Merging the cage confinement with distinct physicochemical properties on a supramolecular level makes it practical to realize synergistic and cooperative effects for functionality enhancement beyond molecular components or the reactivity different from the bulky solution, which could largely expand the potential of MOCs as a multirole platform to wide application scenarios such as artificial photosynthesis, unconventional catalysis, and theranostic nanomedicine.