Games are considered to be the most attractive and healthy event between nationsand peoples. Soft expert sets are helpful for capturing uncertain and vague information.By contrast, neutrosophic set is a tri-component logic set, thus it can deal with uncertain,indeterminate, and incompatible information where the indeterminacy is quantified explicitly andtruth membership, indeterminacy membership, and falsity membership independent of each other.Subsequently, we develop a combined approach and extend this concept further to introduce thenotion of the neutrosophic cubic soft expert sets (NCSESs) by using the concept of neutrosophiccubic soft sets, which is a powerful tool for handling uncertain information in many problems andespecially in games. Then we define and analyze the properties of internal neutrosophic cubicsoft expert sets (INCSESs) and external neutrosophic cubic soft expert sets (ENCSESs), P-order,P-union, P-intersection, P-AND, P-OR and R-order, R-union, R-intersection, R-AND, and R-OR ofNCSESs. The NCSESs satisfy the laws of commutativity, associativity, De Morgan, distributivity,idempotentency, and absorption. We derive some conditions for P-union and P-intersection of twoINCSESs to be an INCSES. It is shown that P-union and P-intersection of ENCSESs need not be anENCSES. The R-union and R-intersection of the INCSESs (resp., ENCSESs) need not be an INCSES(resp. ENCSES). Necessary conditions for the P-union, R-union and R-intersection of two ENCSESsto be an ENCSES are obtained. We also study the conditions for R-intersection and P-intersectionof two NCSESs to be an INCSES and ENCSES. Finally, for its applications in games, we use thedeveloped procedure to analyze the cricket series between Pakistan and India. It is shown that theproposed method is suitable to be used for decision-making, and as good as or better when comparedto existing models.
Read full abstract