С времен Бора и Йессена (1910-1935) в теории дзета-функций прмменяются вероятностные методы. В 1930 г. они доказали первую теорему для дзета-функции Римана $$\zeta(s), $$ $$s=\sigma+it,$$ которая является прототипом современных предельных теорем, характеризующих поведение дзета-функции при помощи слабой сходимости вероятностных мер. Более точно, они получили, что при $$\sigma>1$$ существует предел $$lim_{T\to\infty} \frac{1}{T} \mathrm{J} \left\{t\in[0,T]: \log\zeta(\sigma+it)\in R\right\},$$ где R - прямоугольник на комплексной плоскости со сторонами, паралельными осям, а $$\mathrm{J}A$$ обозначает меру Жордана множества $$A\subset \mathbb{R}.$$ Два года спустя они распространили приведенный результат на полуплоскость $$\sigma>\frac{1}{2}.$$ Идеи Бора и Йессена были развиты в работах Винтнера, Борщсениуса, Йессена, Сельберга и других известных математиков. Современные версии теорем Бора-Йессена для широкого класса дзета-функций были получены в работах К. Матсумото. В основном теория Бора-Йессена применялась для дзета-функций, имеющих эйлерово произведение по простым числам. В настоящей статье доказывается предельная теорема для дзета-функций, не имеющих эйлерова произведения и являющихся обобщением классичесской дзета-функции Гурвица. Пусть $$\alpha, 0<\alpha \leqslant 1, $$ фиксированный параметр, а $$\mathfrak{a}=\{a_m: m\in \mathbb{N}_0= \mathbb{N}\cup\{0\}\}$$ - периодическая последовательность комплексных чисел. Тогда периодическая дзета-функция Гурвица $$\zeta(s,\alpha; \mathfrak{a})$$ в полуплоскости $$\sigma>1$$ определяется рядом Дирихле $$\zeta(s,\alpha; \mathfrak{a})=\sum_{m=0}^\infty frac{a_m}{(m+\alpha)^s}$$ и мероморфно продолжается на всю комплексную плоскость. Пусть $$\mathcal{B}(\mathbb{C})$$ - борелевское $$\sigma$$-поле комплексной плоскости, $$\mathrm{meas}A$$ - мера Лебега измеримого множества $$A\subset \mathbb{R},$$ а функция $$\varphi(t)$$ при $$ t\geqslant T_0$$ имеет монотонную положительную производную $$\varphi'(t), $$ при $$t\to\infty$$ удовлетворяющую оценкам $$(\varphi'(t))^{-1}=o(t)$$ и $$\varphi(2t) \max_{t\leqslant u\leqslant 2t} (\varphi'(u))^{-1}\ll t. $$ Тогда в статье получено, что при $$\sigma>\frac{1}{2}$$ $$ \frac{1}{T} \mathrm{meas}\left\{t\in[0,T]: \zeta(\sigma+i\varphi(t), \alpha; \mathfrak{a})\in A\right\},\quad A\in \mathcal{B}(\mathbb{C}), $$ при $$T\to\infty$$ слабо сходится к некоторой в явном виде заданной вероятностной мере на $$(\mathbb{C}, \mathcal{B}(\mathbb{C})).$$