Coal seam gas (CSG) is the extraction of methane gas that is desorbed from the coal seam and brought to the surface using a dewatering and depressurisation process within the saturated coalbed. The extracted water is often referred to as co-produced CSG water. In this study, co-produced water from the coal seam of the Bowen Basin (QLD, Australia) was characterised by high concentration levels of Na+ (1156 mg/L), low concentrations of Ca2+ (28.3 mg/L) and Mg2+ (5.6 mg/L), high levels of salinity, which are expected to cause various environmental problems if released to land or waters. The potential treatment of co-produced water using locally sourced natural ion exchange (zeolite) material was assessed. The zeolite material was characterized for elemental composition and crystal structure. Natural, untreated zeolite demonstrated a capacity to adsorb Na+ ions of 16.16 mEq/100 g, while a treated zeolite using NH4+ using a 1.0 M ammonium acetate (NH4C2H3O2) solution demonstrated an improved 136 % Na+ capacity value of 38.28 mEq/100 g after 720 min of adsorption time. The theoretical exchange capacity of the natural zeolite was found to be 154 mEq/100 g. Reaction kinetics and diffusion models were used to determine the kinetic and diffusion parameters. Treated zeolite using a NH4+ pre-treatment represents an effective treatment to reduce Na+ concentration in coal seam gas co-produced waters, supported by the measured and modelled kinetic rates and capacity.
Read full abstract