TGF-beta can induce G1 arrest via many mechanisms including up-regulating p21, p27, and Rb. However, as the member of Rb family, whether RBL2 is induced by TGF-beta treatment remains exclusive. The expression of RBL2 and miR-93 after TGF-beta treatment was determined by quantitative real-time PCR and western blot. The growth of renal cancer cells was determined by CCK-8 assays and cell cycle was determined by PI staining. The binding of miR-93 on RBL2 3'-UTR was determined by double luciferase system. In renal cancer cells, TGF-beta treatment induced expression of RBL2 in a time- and concentration-dependent manner, and RBL2 mediated TGF-beta induced growth inhibition and cell cycle arrest in renal cancer cells. Furthermore, we found that miR-93 directly targeted RBL2 by binding to its 3'-UTR in renal cancer cells. Over-expression of miR-93 significantly reduced the expression of RBL2, whereas knock down of miR-93 up-regulated the expression of RBL2. More importantly, TGF-beta treatment inhibited miR-93 expression, which resulted in up-regulation of RBL2 after TGF-beta treatment. TGF-beta induced RBL2 expression through down-regulating miR-93 in renal cancer cells. The newly identified TGF-beta/miR-93/RBL2 signal pathway reveals a new mechanism of TGF-beta induced growth arrest in renal cancer.