We have introduced an approach to establish a methodology for 3D optical simulation that allows analyzing optical losses in the individual layers of a thin-film solar cell structure. Using commercial Finite-Difference Time-Domain (FDTD) tool, where Maxwell’s Curl equations were rigorously solved for optimizing such cells, a computer modeling has been performed. We have reported the ways to investigate efficient light-trapping schemes by using periodically textured transparent conductive oxide (TCO) in thin-film amorphous silicon solar cells. The optical effects in small area thin film silicon p-i-n solar cells deposited on glass substrates coated with aluminum doped zinc oxide (ZnO:Al) have been addressed. In order to enhance the efficiency, TCO surface morphology has been analyzed, where pyramidal and parabolic textured surfaces have been used. For these cells, the quantum efficiency, short-circuit current, total reflectance, and all absorption losses have been successfully computed and analyzed. The investigation was carried out based on our proposed model that exhibits maximum current density of 17.32 mA/cm2 for the absorbing layer thickness of 300 nm.