Automatic detection and recognition of wheel hub text, which can boost the efficiency and accuracy of product information recording, are undermined by the obscurity and orientation variability of text on wheel hubs. To address these issues, this paper constructs a wheel hub text dataset and proposes a wheel hub text detection and recognition model called HubNet. The dataset captured images on real industrial production line scenes, including 446 images, 934 word instances, and 2947 character instances. HubNet is an end-to-end text detection and recognition model, not only comprising conventional detection and recognition heads but also incorporating a feature cross-fusion module, which improves the accuracy of recognizing wheel hub texts by utilizing both global and local features. Experimental results show that on the wheel hub text dataset, the HubNet achieves an accuracy of 86.5%, a recall of 79.4%, and an F1-score of 0.828, and the feature cross-fusion module increases the accuracy by 2% to 4%. The wheel hub dataset and the HubNet offer a significant reference for automatic detection and recognition of wheel hub text.
Read full abstract