Long non-coding RNAs (lncRNAs) play an important role in various biological processes in plants. However, there have been few reports on the evolutionary signatures of lncRNAs in closely related cotton species. The lncRNA transcription patterns in two tetraploid cotton species and their putative diploid ancestors were compared in this paper. By performing deep RNA sequencing, we identified 280 429 lncRNAs from 21 tissues in four cotton species. lncRNA transcription evolves more rapidly than mRNAs, and exhibits more severe turnover phenomenon in diploid species compared to that in tetraploid species. Evolutionarily conserved lncRNAs exhibit higher expression levels, and lower tissue specificity compared with species-specific lncRNAs. Remarkably, tissue expression of homologous lncRNAs in Gossypium hirsutum and G. barbadense exhibited similar patterns, suggesting that these lncRNAs may be functionally conserved and selectively maintained during domestication. An orthologous lncRNA, lncR4682, was identified and validated in fibers of G. hirsutum and G. barbadense with the highest conservatism and expression abundance. Through virus-induced gene silencing in upland cotton, we found that lncR4682 and its target genes GHPAS2 and GHKCS19 positively regulated fiber elongation. In summary, the present study provides a systematic analysis of lncRNAs in four closely related cotton species, extending the understanding of transcriptional conservation of lncRNAs across cotton species. In addition, LncR4682-PAS2-KCS19 contributes to cotton fiber elongation by participating in the biosynthesis of very long-chain fatty acids.
Read full abstract