This study was conducted with gilts as an animal model to test the hypothesis that dietary supplementation with L-citrulline (Cit) improves placental angiogenesis and embryonic survival. Between Days 14 and 25 of gestation, each gilt was fed a corn- and soybean-meal-based diet (2 kg/day) supplemented with 0.4% Cit or an isonitrogenous amount of L-alanine (Control). On Day 25 of gestation, gilts were hysterectomized to obtain conceptuses. Amniotic and allantoic fluids and placentae were analyzed for NOx [stable oxidation products of nitric oxide (NO)], polyamines, and amino acids (AAs). Placentae were also analyzed for syntheses of NO and polyamines; concentrations of AAs and related metabolites; and the expression of angiogenic factors and aquaporins (AQPs). Compared to the control group, Cit supplementation increased (P < 0.01) the number of viable fetuses by 2.0 per litter, the number and diameter of placental blood vessels (21% and 24%, respectively), placental weight (15%), and total allantoic and amniotic fluid volumes (20% and 47%, respectively). Cit supplementation also increased (P < 0.01) enzymatic activities of GTP-cyclohydrolase-1 (32%) and ornithine decarboxylase (27%) in placentae; syntheses of NO (29%) and polyamines (26%); concentrations of NOx (19%), tetrahydrobiopterin (28%), polyamines (22%), cAMP (26%), and cGMP (24%) in placentae; total amounts of NOx (22-40%), polyamines (23-40%), AAs (16-255%), glucose (22-44%), and fructose (22-43%) in allantoic and amniotic fluids. Furthermore, Cit supplementation increased (P < 0.05) placental mRNA levels for angiogenic factors (eNOS [84%], GTP-CH1 [55%], PGF [61%], VEGFA120 [26%], and VEGFR2 [137%], as well as AQPs - AQP1 [105%], AQP3 [53%], AQP5 [77%], AQP8 [57%], and AQP9 [31%]). Collectively, dietary Cit supplementation enhanced placental NO and polyamine syntheses as well as angiogenesis to improve conceptus development and survival.