The microscopic aspects of 1-methyl-3-octylimidazolium tetrafluoroborate ([MOIm][BF4]) mixtures with formamide (FA), N-methylformamide (NMF), and N,N-dimethylformamide (DMF) were investigated using spectroscopic techniques of femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES), FT-IR, and NMR. Molecular dynamics simulations and quantum chemistry calculations were also performed. According to fs-RIKES, the first moment of the low-frequency spectrum bands mainly originating from the intermolecular vibrations in the [MOIm][BF4]/FA and [MOIm][BF4]/DMF systems changed gradually with the molecular liquid mole fraction XML but that in the [MOIm][BF4]/NMF system was constant up to XNMF = 0.7 and then gradually increased in the range of XNMF ≥ 0.7. Excluding the contribution of the 2D hydrogen-bonding network due to the presence of FA in the low-frequency spectrum band, the XML dependence of the normalized first moment of the low-frequency band in the [MOIm][BF4]/FA and [MOIm][BF4]/NMF systems revealed that the normalized first moment did not remarkably change in the range of XML < 0.7 but drastically increased in XML ≥ 0.7. FT-IR results indicated that the amide C═O band shifted to the low-frequency side with increasing XML for the three mixtures due to the hydrogen bonds. The imidazolium ring C-H band also showed a similar tendency to the amide C═O band. 19F NMR probed the microenvironment of [BF4]- in the mixtures. The [MOIm][BF4]/NMF and [MOIm][BF4]/DMF systems showed an up-field shift of the F atoms of the anion with increasing XML, and the [MOIm][BF4]/FA system exhibited a down-field shift. Steep changes in the chemical shifts were confirmed in the region of XML > 0.8. On the basis of the quantum chemistry calculations, the observed chemical shifts with increasing XML were mainly attributed to the many-body interactions of ions and amides for the [MOIm][BF4]/FA and [MOIm][BF4]/DMF systems. Meanwhile, the long distance between the cation and the anion was due to the high dielectric medium for the [MOIm][BF4]/NMF system, which led to an up-field shift.
Read full abstract