In this paper, we developed a paper-based fluorescent sensor using functional composite materials composed of graphene quantum dots (GQDs) coated with molecularly imprinted polymers (MIPs) for the selective detection of tetracycline (TC) in water. GQDs, as eco-friendly fluorophores, were chemically grafted onto the surface of paper fibers. MIPs, serving as the recognition element, were then wrapped around the GQDs via precipitation polymerization using 3-aminopropyltriethoxysilane (APTES) as the functional monomer. Optimal parameters such as quantum dot concentration, grafting time, and elution time were examined to assess the sensor's detection performance. The results revealed that the sensor exhibited a linear response to TC concentrations in the range of 1 to 40 µmol/L, with a limit of detection (LOD) of 0.87 µmol/L. When applied to spiked detection in actual water samples, recoveries ranged from 103.3% to 109.4%. Overall, this paper-based fluorescent sensor (MIPs@GQDs@PAD) shows great potential for portable, multi-channel, and rapid detection of TC in water samples in the future.