In response to the trajectory tracking control problem of manipulators under measurement disturbances, a novel multi-input multi-output discrete integral terminal sliding mode control scheme is proposed. Initially, this scheme establishes a dynamic model of a two-joint manipulator based on the Lagrangian dynamics analysis method. Subsequently, a discrete integral terminal sliding mode control law based on the dynamic model of the two joints is designed, incorporating delayed estimation of unknown disturbances and discretization errors in the manipulator system. To enhance the trajectory tracking accuracy of the control scheme and suppress the impact of sliding mode chattering on the manipulator system, an adaptive switching term is introduced into the discrete integral terminal sliding mode control law. The paper derives an adaptive discrete integral terminal sliding mode control scheme and provides stability proof for the proposed approach. Simulation experiments are conducted to compare the proposed adaptive discrete integral terminal sliding mode control scheme with classical discrete sliding mode control schemes and discrete integral terminal sliding mode control schemes. The simulation results demonstrate that the designed adaptive discrete integral terminal sliding mode control scheme maintains trajectory tracking errors within 0.004 radians for each joint of the manipulator, with minimal changes in control torque for each joint. The absolute integral of the control torque variations is calculated at 5.85×103, which is lower than other control schemes, thereby validating the effectiveness and superiority of the proposed approach.