The asymmetric cyclic loading process occurs in aero-engine turbine discs. A constitutive model that accurately describes the cyclic elastoplastic behaviour of the material is important for structural design and low cycle fatigue life prediction of turbine discs. In this paper, the low cycle fatigue test of FGH95 was carried out at 620℃ under 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0% and 1.1% strain amplitude with strain ratio equal to 0. The material exhibited cyclic hardening followed by cyclic softening at high strain amplitudes and cyclic softening at low strain amplitudes. The mean stress relaxation rate was similar for each strain amplitude. In addition, the evolution of effective stress and back stress was obtained through the method of internal stress division. Then, the relationship between the change in stress amplitude and the change in internal stress was discussed. The results showed that with cyclic loading, cyclic hardening/softening of FGH95 was affected by the competition mechanism of back and effective stresses. Considering that slip deformation and crystal lattice rotation coexist in plastic deformation, the dynamic recovery term of the Abdel-Karim and Ohno model was used. In order to characterize the different magnitudes of back stress change in materials at different plastic strain intervals, a dynamic recovery term coefficient was introduced to the dynamic recovery term and the critical surface of the back stress. The modified model was used to compare with experimental results. Then, it gives a good description of the material’s mean stress relaxation and strain amplitude variation and gives good agreement on the hysteresis loop.
Read full abstract