Here, we demonstrate a label-free dual optical response strategy for the detection of cytochrome c (Cyt c) with ultrahigh sensitivity using highly luminescent lanthanides containing inorganic-organic hybrid nanotubular sensor arrays. These sensor arrays are formed by the sequential incorporation of the photosensitizers 2,3-dihydroxynaphthalene (DHN) or 1,10-phenanthroline (Phen), and trivalent lanthanide terbium ions (Tb3+) into sodium lithocholate (NaLC) nanotube templates. Our sensing platform relies on the detection and quantification of Cyt c in solution by providing dual photoluminescence quenching responses from the nanotubular hybrid arrays in the presence of Cyt c. The large quenching of the sensitized Tb3+ emission within the DHN/Phen-Tb3+-NaLC nanotubular sensor arrays caused by the strong binding of the photosensitizers to Cyt c provides an important signal response for the selective detection of Cyt c. This long-lived lanthanide emission response-based sensing strategy can be highly advantageous for the detection of Cyt c in a cellular environment eliminating background fluorescence and scattering signals through time-gated measurements. The DHN containing nanotubular sensor arrays (DHN-NaLC and DHN-Tb3+-NaLC) provide an additional quenching response characterized by a unique spectral valley splitting with quantized quenching dip on the DHN fluorescence emission. This spectral quenching dip resulting from efficient FRET between the protein bound DHN photosensitizer and the heme group of Cyt c serves as an important means for specific detection and quantification of Cyt c in the concentration range of 0-30 μM with a low detection limit of around 20 nM.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access