The boson peak in the terahertz vibrational spectrum carries information about nano-heterogeneities in the shear modulus in glass formers. Its evolution upon heating or cooling in a supercooled liquid state may shed light on the temperature dependence of heterogeneities. For this purpose, an analysis of the light scattering spectra of supercooled glycerol in the spectral range of the boson peak and fast relaxation was carried out and the parameters of the boson peak in the temperature range 180-330K were determined. The temperature dependent frequency of the boson peak was then expressed in terms of the mean-square amplitude of the shear modulus fluctuations. This was done using the heterogeneous elasticity theory in combination with the perturbation theory on small fluctuations and Ioffe-Regel criterion for transverse vibrations in glass formers. The contribution of structural relaxation effects to phonon damping becomes significant with increasing temperature. It is shown here that structural relaxation largely determines the temperature dependence of the mean-square fluctuations of the shear modulus at high temperatures. By solving the inverse problem, the temperature dependence of shear modulus fluctuations was obtained. It shows a rapid decrease above ∼250K with a linear extrapolation going to zero at the so-called Arrhenius temperature TA = 350K. Comparison with literature data on the Landau-Placzek ratio shows that they have a similar temperature dependence at T < TA, which is explained by the appearance of nanometer scale spatial heterogeneities below TA. This is confirmed by the temperature dependence of the amplitude of the boson peak.