Open tension-free inguinal hernioplasty is one of the common surgical methods used today to treat inguinal hernias due to its simplicity and low recurrence rate. With the widespread use of tension-free inguinal hernia repair, the number of patients with mesh infections is gradually increasing. However, there is a lack of studies assessing the quality of life of patients after the removal of late-onset infected meshes in open inguinal hernias. The aim of this study was to analyse and assess the quality of life, pain severity and anxiety of patients after late-onset infection mesh removal following open inguinal hernioplasty. Data from 105 patients admitted to our hospital from January 2014 to January 2019 who developed delayed mesh infection after open tension-free inguinal hernia repair were retrospectively analysed. 507 patients without mesh infection after open inguinal hernioplasty were included as cross-sectional controls. The baseline data of the two groups were matched for propensity score matching (PSM) with a caliper value of 0.05 and a matching ratio of 1:1. Patients are followed up by telephone or outpatient consultations for 3years to assess quality of life, pain and anxiety after removal of the infected mesh. The 105 patients who developed late-onset mesh infection after inguinal hernia repair had a mean age of 64.07 ± 12.90years and a mean body mass index (BMI) of 24.64 ± 2.67 (kg/m2). The mean follow-up time was 58months and 10.5% (10/105) of the patients were lost to follow-up. At the 3-year follow-up there was one case of hernia recurrence and five cases of mesh reinfection. The patients' quality of life scores, pain scores and anxiety scores improved after surgery compared to the preoperative scores (all p < 0.01). Patients with late-onset mesh infection after inguinal hernioplasty showed an improvement in quality of life, pain and anxiety compared to preoperative after removal of the infected mesh. Mesh-plug have a higher risk of mesh infection due to their poor histocompatibility and tendency to crumple and shift.
Read full abstract